

SYDNEY BOYS HIGH SCHOOL

NESA Number:						
Na	me	:				
Maths Class: Circle						

A B 1 2 S

	YEA
2024	TAS
	TRI
	-

'EAR 12 TASK 4 TRIAL HSC

Mathematics Extension 2

General	Reading time – 10 minutes			
Instructions	Working time – 3 hours			
	Write using black pen			
	NESA approved calculators may be used			
	A reference sheet is provided with this paper			
	Marks may NOT be awarded for messy or badly arranged work			
	Unless otherwise stated, all answers should be left in simplified exact form			
	For questions in Section II, show ALL relevant mathematical reasoning and/or calculations			
Total Marks: 100	Section I – 10 marks (pages 2 – 5)			
I Utal Marks, 100	Sector 1 To marks (pages 2 - 5)			
	Attempt Questions $1 - 10$ Allow about 15 minutes for this section			
	Section II – 90 marks (pages 6 – 14)			
	Attempt all Questions in Section II Allow about 2 hours and 45 minutes for this section			

Examiner: *External Examiner*

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section. Use the multiple-choice answer sheet for Questions 1–10.

- 1 P(x) is a polynomial of degree 4 with real coefficients. Which one of the following statements must be false?
 - A. P(x) = 0 has no real roots.
 - B. P(x) = 0 has one (repeated root) and two non-real roots.
 - C. P(x) = 0 has one real root and three non-real roots.
 - D. P(x) = 0 has four real roots.
- 2 The complex numbers z, iz, and z + iz, where $z \neq 0$, are plotted in an Argand diagram, forming the vertices of a triangle.

What is the area of this triangle?

A. $|z| + |z|^2$ B. $\frac{|z|^2}{2}$

C. $|z|^2$

D.
$$\frac{\sqrt{3}|z|^2}{2}$$

3 Which of the following is an antiderivative of $\frac{1}{x \ln(2x)}$?

A.
$$\frac{1}{2} \log_e \left(\log_e 2x \right)$$

B. $\log_e \left(\log_e 2x \right)$

C.
$$2\log_e(\log_e 2x)$$

D.
$$\log_e \left(x \log_e 2x \right)$$

4 The velocity vector of a 5 kg mass moving in the Cartesian plane is given by

 $\underbrace{\mathbf{v}(t)}_{\widetilde{\mathbf{v}}} = 3\sin(2t)\underbrace{\mathbf{i}}_{\widetilde{\mathbf{v}}} + 4\cos(2t)\underbrace{\mathbf{j}}_{\widetilde{\mathbf{v}}},$

where the velocity components are measured in metres per second.

During its motion, what is the magnitude of the maximum net force, in Newtons, acting on the mass?

- A. 30
- B. 40
- C. 50
- D. 70

5 A particle travelling in a straight line has velocity v m/s at time t s.

Its acceleration is given by $\frac{dv}{dt} = -0.05(v^2 - 5)$.

Its velocity is 50 m/s initially and is reduced to 3 m/s. Which one of the following is an expression for the time taken in seconds for this to occur?

A.
$$-0.05 \int_{50}^{3} v^2 - 5 \, dv$$

B. $-0.05 \int_{3}^{50} v^2 - 5 \, dv$
C. $20 \int_{50}^{3} \frac{1}{v^2 - 5} \, dv$
D. $20 \int_{3}^{50} \frac{1}{v^2 - 5} \, dv$

6 A particle is undergoing simple harmonic motion with velocity v given by

$$v^2 = 4 - (x+1)^2$$

Initially the particle was 1 m to the left of O moving to the right at 2 m/s. Which one of the following could be the acceleration a?

- A. $a = 2 \sin t$
- B. $a = -2 \sin t$
- C. $a = 2 \cos 2t$
- D. $a = -2\cos 2t$

7 A particle's displacement, x, after t seconds is represented by the equation

 $x = 3 \cos nt$,

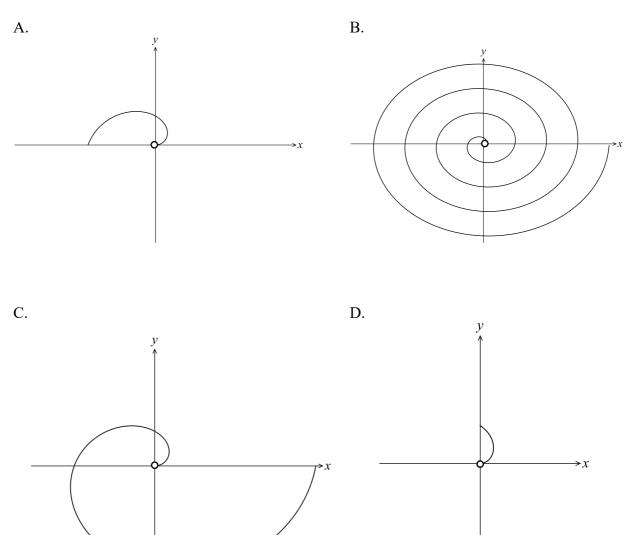
where *n* is a real constant.

The particle passes through the origin with a speed of $\sqrt{3}$ m/s.

What is the period, in seconds, of the particle's motion?

A. $\frac{2\pi\sqrt{3}}{3}$
B. $\frac{2\sqrt{3}}{3\pi}$
C. $2\sqrt{3}\pi$

D.
$$\frac{2\sqrt{3}}{\pi}$$


8 A particle of mass m falls vertically from rest under gravity in a medium in which the resistance to the motion has magnitude

$$\frac{1}{40}mv^2,$$

where v m/s is the speed of the particle and $g = 9.8 \text{ m/s}^2$ is the acceleration due to gravity.

What is the terminal velocity of the particle?

- A. 400 m/s B. 392 m/s
- C. 20 m/s D. 19.8 m/s
- 9 Given that z is a complex number satisfying the equation $\operatorname{Arg}\left(1-\frac{1}{z}\right) = \frac{\pi}{3}$, which of the following expressions is true?
 - A. Arg z Arg $(z-1) = \frac{\pi}{3}$ B. Arg $\left(\frac{z-2}{z-1}\right) \ge \frac{\pi}{3}$
 - C. $|z|^2 + |z-1|^2 |z(z-1)| 1 = 0$ D. $|z|^2 + |z-1|^2 + |z(z-1)| 1 = 0$

Section II

90 marks Attempt Questions 11-16 Allow about 2 hours and 45 minutes for this section

In Questions 11-16, your responses should include ALL relevant mathematical reasoning and/or calculations.

Quest	ion 11 ((15 marks)	Use a SEPARATE writing booklet
(a)	Let <i>u</i>	$=2(\cos\frac{\pi}{10}-i\sin)$	$\left(\frac{\pi}{10}\right)$ and $v = \sqrt{3} - i$.
	(i)	Express <i>uv</i> in e	exponential form.
	(ii)	If $w^2 = v$, find a	all possible values of <i>w</i> .

(b) Evaluate
$$\int_{1}^{2} x^2 \sqrt{2-x} \, dx$$
. 3

(c) A quartic equation

$$iz^{4} + (-3 - 7i)z^{3} + (21 + 17i)z^{2} + (-51 - 15i)z + 45 = 0$$

has 4 distinct roots, z_1 , z_2 , z_3 , and z_4 which are represented by point *A*, *B*, *C*, and *D* respectively. It is given $z_1 = -3i$, $z_3 = 3$, and Im $(z_4) > 0$

(i) Find z_2 and z_4 .

2

3

2

2

(ii) Point E represents the complex number wz_3 such that ABDE forms a parallelogram.

By sketching the points *A*, *B*, and *D* on an Argand diagram, or otherwise, find *w* in the form $re^{i\theta}$ where r > 0, and $-\pi < \theta \le \pi$.

Question 11 continues on page 7

(d) Sketch on the one diagram of the Argand diagram defined by

$$1 \le |z+2i| \le 2$$
 and $\left| \arg(z+4i) - \frac{3\pi}{8} \right| \le \frac{\pi}{8}$.

Question 12 (14 marks) Use a SEPARATE writing booklet

(a) (i) Express
$$\frac{3x+7}{(x+1)(x+2)(x+3)}$$
 in partial fractions. 3

(ii) Hence prove that
$$\int_0^1 \frac{3x+7}{(x+1)(x+2)(x+3)} dx = \ln 2.$$
 2

(b) Given that
$$\omega$$
 is one of the non-real roots of $z^3 = 1$, show that, $\frac{\omega^2}{1 + \omega^2} = -\frac{1}{\omega^2}$.

(c) A student builds a device designed to safely transport a particular fragile item that needs to be transported by dropping the item from a fixed height.

The total mass of the loaded device must be *m* kg and there is a parachute installed in the device which is designed to open after $\frac{1}{3k}$ seconds of motion.

When the parachute is opened the device experiences a resistance equal to mkv N, where k is a positive constant and v is its speed in metres per second.

It is observed that the loaded device reaches the ground and lands with a speed of $\frac{5g}{6k}$ m/s Assume that without the parachute the air resistance of the device is negligible and that the acceleration due to gravity is g m/s².

(i) Using calculus, show that the speed of the loaded device at time
$$t = \frac{1}{3k}$$
 2

is
$$\frac{g}{3k}$$
 m/s

(ii) After the parachute has been opened show that $v = \frac{g}{k} \left(1 - \frac{2}{3} e^{\frac{1}{3} - kt} \right)$, 3

for
$$t \ge \frac{1}{3k}$$
.

(iii) Find the time taken to reach the ground, in terms of k.

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) A particle moves in a straight line with acceleration $a = -5e^{\nu}$. The particle is initially at the origin with velocity 2 m/s.

(i) Show that the particle comes to rest when
$$t = \frac{1}{5}(1-e^{-2})$$
. 2

(ii) Show that the particle stops when
$$x = \frac{1}{5} (1 - 3e^{-2})$$
. 3

1

3

1

- (iii) Describe the motion.
- (b) A sequence u_1, u_2, u_3, \dots is such that

$$u_1 = \frac{1}{4}$$
, and $u_{n+1} = u_n + \frac{1}{n(n+1)} + 2^{-n}$, for $n \in \mathbb{Z}^+$.

(i) Prove by mathematical induction that

(ii) Show that
$$u_n < \frac{9}{4}$$
 for $n \in \mathbb{Z}^+$.

(c) The equation of motion for a particle is given by

$$\frac{dv}{dt} = -n^2 x,$$

where n is a positive constant, x is the displacement at time t, and v is the velocity at time t.

- (i) Show that $v^2 = n^2(A^2 x^2)$, where A is a constant, satisfies the above equation. 1
- (ii) If the particle is initially at the origin, find the first time that the particle's 4 speed is half its maximum speed.

Question 14 (16 marks) Use a SEPARATE writing booklet

(a) A particle P is projected from the origin with initial speed V m/s at an angle 45° above the positive x-axis.

The position vector of the particle, $\mathbf{r}(t)$, where t is the time in seconds after the particle is projected, is given by

$$\mathbf{r}(t) = \begin{pmatrix} \frac{Vt}{\sqrt{2}} \\ \\ -\frac{1}{2}gt^2 + \frac{Vt}{\sqrt{2}} \end{pmatrix}.$$
 (Do NOT prove this)

(i) Show that the equation of the trajectory of *P* is

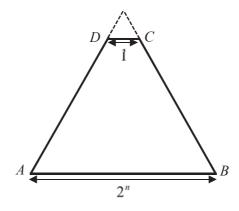
$$y = x - \frac{g}{V^2} x^2.$$

The point of projection (the origin) is on the floor of a barn.

The roof of the barn is given by the equation $y = x \tan \alpha + b$, where b > 0, and α is an acute angle.

(ii) Show that, if the particle just touches the roof then

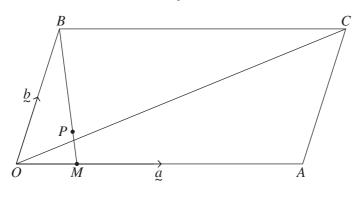
$$V(-1+\tan\alpha)=-2\sqrt{bg}.$$


(iii) If this condition is satisfied, find, in terms of α , V, and g, the time after projection at which touching takes place.

Question 14 continues on page 11

2

2


(b) A shape ABCD is formed by taking an equilateral triangle of side length 2^n (*n* is a positive integer) and removing an equilateral triangle of side length 1 from one of its corners.

A trapezium tile, see diagram below, consists of three equilateral triangles of side length 1 unit.

- (i) Prove using induction that trapezium tiles, can fully cover the shape without any overlapping $2f_{0}$ all positive integers *n*.
- (ii) Hence explain why a regular hexagon with side length 2^n can be fully covered by these trapezium tiles, and determine, in terms of *n*, the number of tiles required. **3**

(c) Let *OACB* be a parallelog \overrightarrow{Am} -with $\overrightarrow{OAB} = aband \overrightarrow{OB} = b$ $\overrightarrow{OM} = \stackrel{M}{OA} \stackrel{is a point on OA}{is a point on MB}$ such that $OM = \frac{1}{MP} \stackrel{OA1}{=} \frac{1}{MB}$, \overrightarrow{P} is a point on MB such that $MP = \frac{1}{6} MB$, \overleftarrow{AmB} , \overleftarrow{AmB} ,

(i) Show that *P* lies on *OC*.

(ii) State the ratio of length
$$OP : PC$$
.
 $e^{in\theta} + e^{-in\theta} = 2\cos n\theta$.

$$\left(e^{i\theta} + e^{-i\theta}\right)^5, \qquad \text{End}^5 \sigma \mathbf{f} \quad \mathbf{f}$$

www.KiasuExam β_{a}

3

1

Question 15 (16 marks) Use a SEPARATE writing booklet

(a) A hose situated at the origin sprays water with initial speed u m/s and at angle of θ to the positive *x*-axis.

The hose sprays water to a height of 80 m.

We will consider the motion of one water particle in the spray.

(i) Assuming no air resistance, the position vector of the particle, r(t), where t is the time in seconds after the water starts to spray, is given by

$$r(t) = \begin{pmatrix} ut \cos \theta \\ \\ -5t^2 + ut \sin \theta \end{pmatrix}.$$
 (Do NOT prove this.)

2

Show that $u \sin \theta = 40$.

Taking into account air resistance, the acceleration, a, of a water drop is given by

$$\underline{a}(t) = \begin{pmatrix} -0.2\dot{x} \\ \\ -10 - 0.2\dot{y} \end{pmatrix},$$

where x and y refers to the horizontal and vertical displacement respectively of a water drop at time t seconds.

(ii) Show that
$$y = -5(50 + u\sin\theta)e^{-0.2t} - 50t + 5(50 + u\sin\theta)$$
. 4

(iii) Hence show that
$$y = 5\left[-\dot{y} + u\sin\theta + 50\ln\left(\frac{10 + 0.2\dot{y}}{10 + 0.2u\sin\theta}\right)\right]$$
 3

(iv)How high does the water from the hose reach now?1Leave your answer to the nearest whole number.1

Question 15 continues on page 13

(b) Suppose f and g are real-valued continuous functions defined on [0, a], where a > 0, satisfy the conditions:

$$f(x) = f(a - x)$$
 and
 $g(x) + g(a - x) = m$, where $m \in \mathbb{R}$.

(i) Show that
$$\int_{0}^{a} f(x) g(x) dx = \frac{m}{2} \int_{0}^{a} f(x) dx.$$
 3

(ii) Hence evaluate
$$\int_0^{\pi} x \sin x \cos^4 x \, dx$$
. 3

End of Question 15

Question 16 (14 marks) Use a SEPARATE writing booklet

(a) Given
$$I_n = \int_0^1 (1-x)^n e^x dx$$
, where *n* is a non-negative integer.

(i) Show that
$$I_n = -1 + n I_{n-1}$$
 for $n \ge 1$. 2

(ii) Evaluate
$$\int_{0}^{1} (1-x)^{3} e^{x} dx$$
. 2

(b) (i) Prove that
$$\int_{0}^{a} f(a-x) dx = \int_{0}^{a} f(x) dx$$
, for constant *a*. 1

(ii) Hence or otherwise, evaluate
$$\int_{0}^{2\pi} x |\cos x| dx$$
. 3

(c) Let *n* be an integer, such that $n \neq 1$.

(i) Prove that
$$\sin \frac{\pi}{2n} \sum_{k=1}^{n-1} \sin \frac{k\pi}{n} = \cos \frac{\pi}{2n}$$
.

(ii) Let
$$\alpha = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$$
.

Prove that
$$\sum_{k=1}^{n-1} \left| \alpha^k - 1 \right| = 2 \cot \frac{\pi}{2n}.$$

End of paper

SYDNEY BOYS HIGH SCHOOL

YEAR 12 HSC TASK 4

Mathematics Extension 2 Sample Solutions

NOTE: This process of checking your mark is about reading the solutions and the comments.

Before putting in an appeal re marking, first consider that the mark is not linked to the amount of writing you have done.

Just because you have shown some 'working' does not justify that your solution is worth any marks.

Students who used pencil, an erasable pen and/or whiteout, may NOT be able to appeal.

MC Answers

1	2	3	4	5	6	7	8	9	10
С	В	В	В	D	В	С	D	С	А

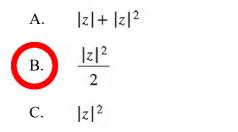
1

C.

D.

P(x) is a polynomial of degree 4 with real coefficients. Which one of the following statements must be false?

- A. P(x) = 0 has no real roots.
- B. P(x) = 0 has one (repeated root) and two non-real roots.


P(x) = 0 has one real root and three non-real roots.

P(x) = 0 has four real roots.

Non-real roots must occur in conjugate pairs.

2 The complex numbers z, iz, and z + iz, where $z \neq 0$, are plotted in an Argand diagram, forming the vertices of a triangle.

What is the area of this triangle?

D.
$$\frac{\sqrt{3}|z|^2}{2}$$

 $\frac{d}{dx}(\ln(2x)) = \frac{1}{r}$

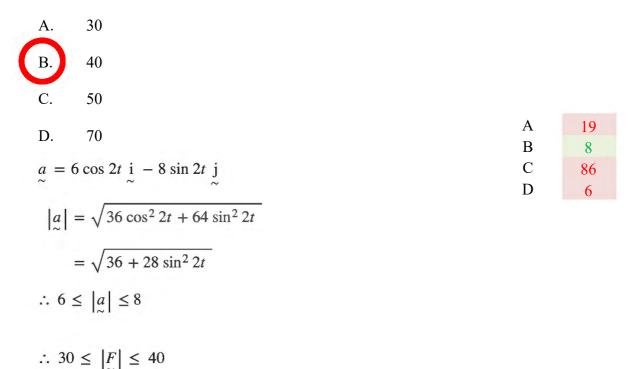
z and iz are perpendicular and have lengths |z|.

3 Which of the following is an antiderivative of $\frac{1}{x \ln(2x)}$?

А.	$\frac{1}{2}\log_e\left(\log_e 2x\right)$	A	17	
B.	$\log_e \left(\log_e 2x \right)$	B C	82 18	
-		D	2	
C.	$2\log_e(\log_e 2x)$			
D.	$\log_e(x \log_e 2x)$			

А	5
В	5
С	109
D	0

А	0	
В	110	
С	3	
D	6	


.

The velocity vector of a 5 kg mass moving in the Cartesian plane is given by

 $\mathbf{v}(t) = 3\sin(2t)\mathbf{i} + 4\cos(2t)\mathbf{j},$

where the velocity components are measured in metres per second.

During its motion, what is the magnitude of the maximum net force, in Newtons, acting on the mass?

The question should have had said "maximum net force" so option A was also marked right.

A particle travelling in a straight line has velocity v m/s at time t s.

Its acceleration is given by $\frac{dv}{dt} = -0.05 (v^2 - 5)$.

Its velocity is 50 m/s initially and is reduced to 3 m/s. Which one of the following is an expression for the time taken in seconds for this to occur?

A.
$$-0.05 \int_{50}^{3} v^2 - 5 \, dv$$
 B. $-0.05 \int_{3}^{50} v^2 - 5 \, dv$

А 3 В 0 С 21 D 95

C.
$$20\int_{50}^{3} \frac{1}{v^2 - 5} dv$$
 D. $20\int_{3}^{50} \frac{1}{v^2 - 5} dv$
 $\frac{dv}{dt} = -0.05(v^2 - 5) \Rightarrow -20 \frac{dv}{v^2 - 5} = dt$

$$\therefore -20 \int_{50}^{3} \frac{dv}{v^2 - 5} = \int_{0}^{T} dt \Rightarrow T = 20 \int_{3}^{50} \frac{dv}{v^2 - 5}$$

4

A particle is undergoing simple harmonic motion with velocity v given by

 $v^2 = 4 - (x+1)^2$.

Initially the particle was 1 m to the left of O moving to the right at 2 m/s. Which one of the following could be the acceleration a?

А.	$a = 2 \sin t$	А	27
В.	$a = -2\sin t$	В	49
		С	22
C.	$a = 2\cos 2t$	D	20

D.
$$a = -2\cos 2t$$

 $v^2 = 4 - (x+1)^2 \Rightarrow a = -(x+1)$

 \therefore *n* = 1, so only options A and B

$$v^2 = n^2(A^2 - (x+1)^2) \Rightarrow \text{Amplitude} = 2$$

"Initially the particle was 1 m to the left of O moving to the right at 2 m/s." $\Rightarrow x = -1 + 2 \sin t$

7 A particle's displacement, x, after t seconds is represented by the equation

$$x = 3\cos nt,$$

where *n* is a real constant.

The particle passes through the origin with a speed of $\sqrt{3}$ m/s.

What is the period, in seconds, of the particle's motion?

A.
$$\frac{2\pi\sqrt{3}}{3}$$

B.
$$\frac{2\sqrt{3}}{3\pi}$$

C.
$$2\sqrt{3}\pi$$

D.
$$\frac{2\sqrt{3}}{\pi}$$

 $A = 3$
 $v^2 = n^2(A^2 - x^2) \Rightarrow 3 = n^2(9 - 0)$
 $\therefore n^2 = \frac{1}{3} \Rightarrow n = \sqrt{3}$
 $\therefore T = \frac{2\pi}{n} = 2\sqrt{3}\pi$

Α	27
В	9
С	82
D	1

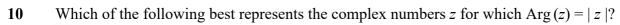
8 A particle of mass m falls vertically from rest under gravity in a medium in which the resistance to the motion has magnitude

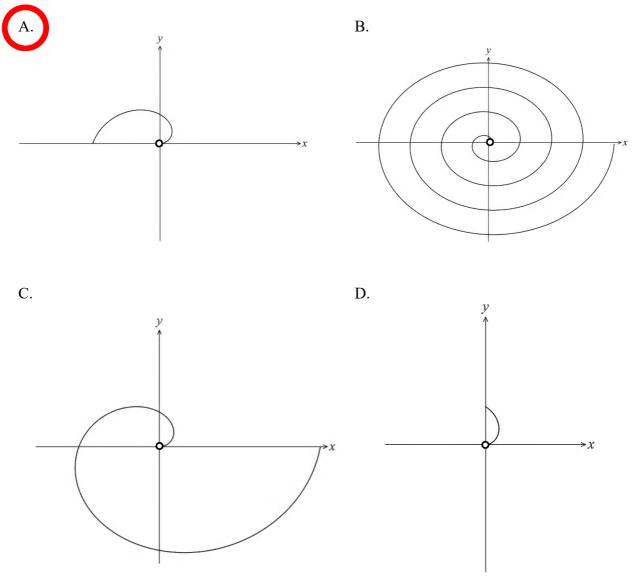
 $\frac{1}{40}mv^2,$

where v m/s is the speed of the particle and $g = 9.8 \text{ m/s}^2$ is the acceleration due to gravity.

What is the terminal velocity of the particle?

$$m\ddot{y} = mg - \frac{1}{40}mv^2 \Rightarrow \ddot{y} = g - \frac{1}{40}v^2$$


Terminal velocity is when $\ddot{y} = 0 \Rightarrow v = \sqrt{40 \times 9.8}$

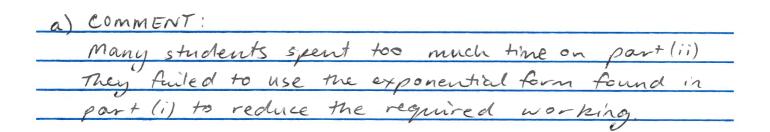

А	0
В	7
С	5
D	107

Given that z is a complex number satisfying the equation $\operatorname{Arg}\left(1-\frac{1}{z}\right) = \frac{\pi}{3}$, which of the following expressions is true?

A.
$$\operatorname{Arg} z - \operatorname{Arg} (z-1) = \frac{\pi}{3}$$

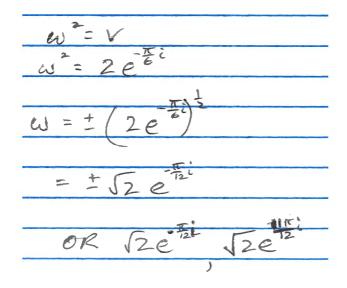
B. $\operatorname{Arg} \left(\frac{z-2}{z-1}\right) \ge \frac{\pi}{3}$
C. $|z|^2 + |z-1|^2 - |z(z-1)| - 1 = 0$
 $\operatorname{Arg} \left(1 - \frac{1}{z}\right) = \frac{\pi}{3} \Rightarrow \operatorname{Arg} \left(\frac{z-1}{z}\right) = \frac{\pi}{3}$
By the cosine rule:
 $1 = |z|^2 + |z-1|^2 - 2 \times |z| \times |z-1| \cos 60^\circ$
A 11
B 22
C 69
D 17
 $\frac{z}{1}$

1 = 0



 $-\pi < \operatorname{Arg} z \le \pi$

 $\therefore 0 < \operatorname{Arg} z = |z| \le \pi$


А	54
В	15
С	37
D	13



- (a) Let $u = 2\left(\cos\frac{\pi}{10} i\sin\frac{\pi}{10}\right)$ and $v = \sqrt{3} i$.
 - (i) Express *uv* in exponential form.

u = 2- isin COS in - #2 0 -V = 13 - L 53 V = 2co3/- 5 11 + isin V=2 RE 2 Te UV = 0 41 -

(a) (ii) If $w^2 = v$, find all possible values of w.

(b) Evaluate
$$\int_{1}^{2} x^2 \sqrt{2-x} \, dx$$
. 3

$$I = \int \frac{\pi}{\sqrt{2-\pi}} \frac{d\pi}{d\pi} \qquad let \quad u = 2-\pi$$

$$\frac{du}{d\pi} = -1$$

$$\frac{du}{d\pi}$$

$$when \quad \pi = 1 \qquad \chi = 2$$

$$\mu = 1 \qquad \mu = 0$$

$$\begin{aligned}
I &= \int_{-1}^{0} (2 - u)^{2} (u - du) \\
&= \int_{0}^{1} u^{\frac{1}{2}} (4 - 4u + u^{2}) du \\
&= \int_{0}^{1} (4u^{\frac{1}{2}} - 4u^{\frac{5}{2}} + u^{\frac{5}{2}}) du \\
&= \int_{0}^{1} (4u^{\frac{1}{2}} - 4u^{\frac{5}{2}} + u^{\frac{5}{2}}) du \\
&= \int_{0}^{1} \frac{8u^{\frac{5}{2}} - 8u^{\frac{5}{2}} + \frac{2}{4}u^{\frac{5}{2}}}{3} \frac{1}{5} \\
&= \frac{8}{3} (1)^{\frac{5}{2}} - \frac{8}{5} (1)^{\frac{5}{2}} + \frac{2}{4} (1)^{\frac{5}{2}} - (0) \\
&= \frac{142}{5} \frac{37}{105} \\
&= \frac{142}{105} \frac{37}{105}
\end{aligned}$$

(c) A quartic equation

$$iz^4 + (-3 - 7i)z^3 + (21 + 17i)z^2 + (-51 - 15i)z + 45 = 0$$

has 4 distinct roots, z_1 , z_2 , z_3 , and z_4 which are represented by point *A*, *B*, *C*, and *D* respectively. It is given $z_1 = -3i$, $z_3 = 3$, and Im (z_4) > 0

COMMENT:

It appeared as though students didn't know how to apply the sum and product of roots when the coefficients are complex. It also appeared that students were unfamiliar with naming quadrilaterals in order of its vertices.

Some students would benefit in asking themselves the question "Does my answer(s) seem reasonable?" Reasonable in the sense that they are not unnecessarily complicated, as there is no need for that (from an examiners point of view)

(c) (i) Find z_2 and z_4 .

$$Z_{1} + Z_{2} + Z_{3} + Z_{4} = \frac{-b}{a}$$

$$-3i + Z_{2} + 3 + Z_{4} = \frac{3+7i}{i} \times \frac{-i}{i}$$

$$3 - 3i + Z_{2} + 24 = 7 - 3i$$

$$Z_{2} + Z_{4} = 4 \qquad (1)$$

$$Z_{1} + Z_{2} + Z_{4} = 4 \qquad (1)$$

$$Z_{1} + Z_{2} + Z_{4} = 4 \qquad (1)$$

$$Z_{1} + Z_{2} + Z_{4} = 4 \qquad (1)$$

$$Z_{1} + Z_{2} + Z_{4} = 4 \qquad (1)$$

$$Z_{1} + Z_{2} + Z_{4} = 4 \qquad (1)$$

$$Z_{1} + Z_{2} + Z_{4} = 4 \qquad (1)$$

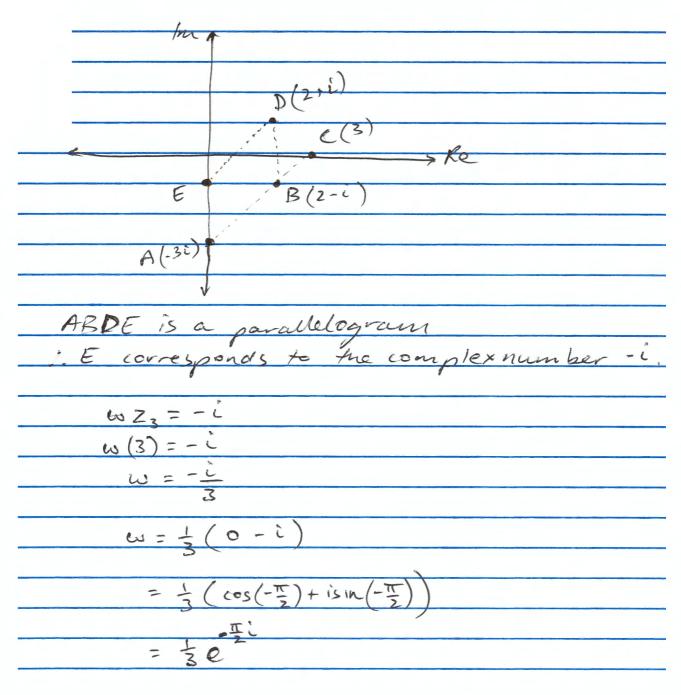
$$Z_{1} + Z_{2} + Z_{4} = 4 \qquad (1)$$

$$Z_{1} + Z_{2} + Z_{4} = 4 \qquad (1)$$

$$Z_{2} + Z_{4} = 4 \qquad (1)$$

$$Z_{2} + Z_{4} = 4 \qquad (2)$$

$$Z_{2} + Z_{4} = 5 \qquad (2)$$

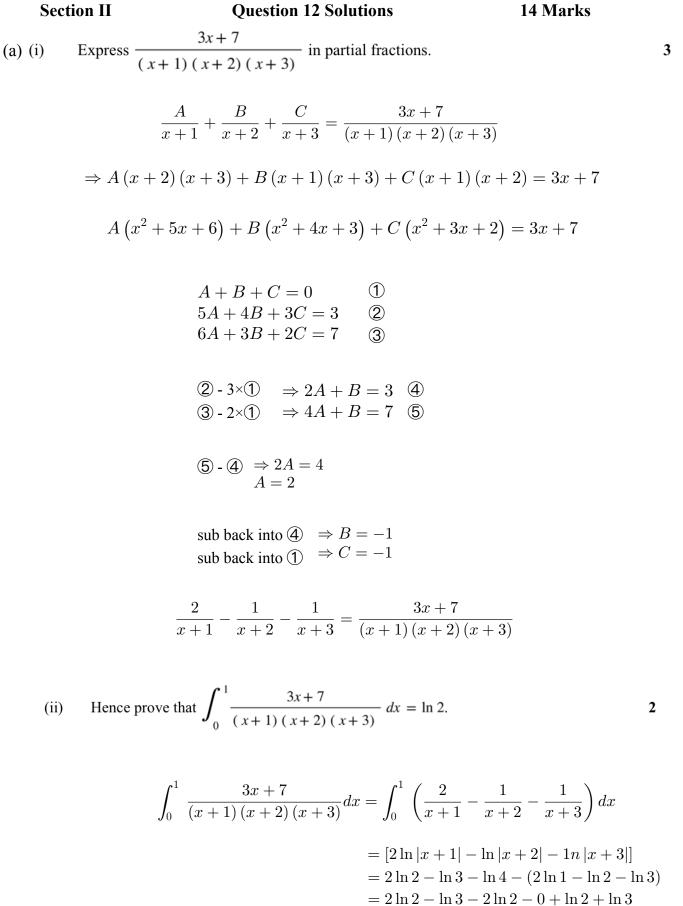

$$Z_{2} + Z_{4} = 4 \qquad (2)$$

$$Z_{2} = 2 + i \qquad (2)$$

$$Z_{2} = 2 + i \qquad (2)$$

(c) (ii) Point *E* represents the complex number wz_3 such that *ABDE* forms a parallelogram.

By sketching the points *A*, *B*, and *D* on an Argand diagram, or otherwise, find *w* in the form $re^{i\theta}$ where r > 0, and $-\pi < \theta \le \pi$.



(d) Sketch on the one diagram of the Argand diagram defined by

 $1 \le |z+2i| \le 2$ and $\left| \arg(z+4i) - \frac{3\pi}{8} \right| \le \frac{\pi}{8}$.

d) COMMENT struggled with most studen the ts Sei ond condition Note: < a here 6>0 b x - a - b < 6 x-a a-b ≤ x ≤ a+b The above result is helpful in finding the ang(z+4i) values that of can take range \$2 Z+2i < Z-(-2i) 5 2 14 understood as the distance from mis Can (0, -2)is between and 2 between the concentric which the region of Circles adi Ì and 2centred at 0,-2 T 31 Z+4ì 5 ang - 31T SI z+41 2 an 4 arg (2+41) T TY. 5 ang Z-(-4i) T 5 this as the argumer com be understood noiht lies om -4 be eer tt 2 Im 4 0 < -3 4 -4

End of Question 11 Solutions

$$= 2 \ln 2$$

 $= \ln 2$

Marker's Comments: This was done well by most pupils whether or not the method above was used or the 'cover up' method.Some pupils did NO work and simply stated the constants for the numerators. For a three mark question, one must show all their working.For pupils who got part i wrong, they needed to get the right

solution for their equation in order to get full marks.

(b) Given that
$$\omega$$
 is one of the non-real roots of $z^3 = 1$, show that, $\frac{\omega^2}{1 + \omega^2} = -\frac{1}{\omega^2}$.

$$z^{3} - 1 = (z - 1) (z^{2} + z + 1)$$

The solutions to the second product are all non-real since it's discriminant is less than zero.

$$\begin{split} \omega^2 + \omega + 1 &= 0 \Rightarrow -\omega^2 = 1 + \omega \\ -\frac{1}{\omega^2} &= \frac{1}{1 + \omega} \times \frac{\omega^2}{\omega^2} \\ &= \frac{\omega^2}{\omega^2 + \omega^3} \\ &= \frac{\omega^2}{1 + \omega^2}, \text{ regardless of which non-real root we choose.} \end{split}$$

Marker's Comments: This question was reasonably well done. Many pupils used the actual non-real roots to prove this. Most only used one of them and NOT the other. Both were needed if you chose to do this. (c) A student builds a device designed to safely transport a particular fragile item that needs to be transported by dropping the item from a fixed height.

The total mass of the loaded device must be *m* kg and there is a parachute installed in the device which is designed to open after $\frac{1}{3k}$ seconds of motion.

When the parachute is opened the device experiences a resistance equal to mkv N, where k is a positive constant and v is its speed in metres per second.

It is observed that the loaded device reaches the ground and lands with a speed of $\frac{5g}{6k}$ m/s

Assume that without the parachute the air resistance of the device is negligible and that the acceleration due to gravity is $g \text{ m/s}^2$.

(i) Using calculus, show that the speed of the loaded device at time $t = \frac{1}{3k}$

is
$$\frac{g}{3k}$$
 m/s.

 $\ddot{y} = -g, \dot{y} = -gt + C$, where C is the initial velocity.

Since the item is dropped from a fixed height, the initial velocity is 0 m/S.

2

Speed is $|\dot{y}|$.

$$\begin{vmatrix} \dot{y}\left(\frac{1}{3k}\right) \end{vmatrix} = \begin{vmatrix} -g \times \frac{1}{3k} \end{vmatrix} \\ = \frac{g}{3k} \end{vmatrix}$$

(ii)

After the parachute has been opened show that $v = \frac{g}{k} \left(1 - \frac{2}{3} e^{\frac{1}{3} - kt} \right)$,

3

for
$$t \ge \frac{1}{3k}$$
.
 $v = |\dot{y}|, v_0 = \frac{g}{3k}$ when $t = \frac{1}{3k}$.
 $v = -\dot{y}$, when $\dot{y} \le 0$.
 $\ddot{y} = -g + kv$
 $\ddot{y} = -g - k\dot{y}$
 $\int \frac{d\dot{y}}{g + k\dot{y}} = -\int dt$
 $\frac{1}{k} \ln|g + k\dot{y}| = -t + C$
 $\ln|g + k\dot{y}| = -kt + C'$
 $g + k\dot{y} = Ae^{-kt}$ (1)

Consider initial conditions.

$$g + k\left(-\frac{g}{3k}\right) = Ae^{-k\frac{1}{3k}}$$
$$\frac{2g}{3}e^{\frac{1}{3}} = A \quad \textcircled{2}$$

Substitute 2 into 1.

$$g + k\dot{y} = \frac{2}{3}ge^{\frac{1}{3}-kt}$$
$$\dot{y} = \frac{g}{k}\left(\frac{2}{3}e^{\frac{1}{3}-kt} - 1\right)$$
$$v = \frac{g}{k}\left(1 - \frac{2}{3}e^{\frac{1}{3}-kt}\right)$$

$$v = \frac{5g}{6k} \quad \text{when it reaches the ground}$$
$$\frac{5g}{6k} = \frac{g}{k} \left(1 - \frac{2}{3}e^{\frac{1}{3} - kt} \right)$$
$$\frac{5}{6} = 1 - \frac{2}{3}e^{\frac{1}{3} - kt}$$
$$\Rightarrow \frac{2}{3}e^{\frac{1}{3} - kt} = \frac{1}{6}$$
$$e^{\frac{1}{3} - kt} = \frac{1}{4}$$
$$\frac{1}{3} - kt = -2\ln 2$$
$$t = \frac{6\ln 2 + 1}{3k}$$

Marker's Comments: In general this question was done well with a few silly mistakes here and there. The intention of the question was to take the downward direction as positive, which makes most things simpler.

Part (i) was done very well.

Part (ii) was mostly done well. Some algebra mistakes occurred in some working or occasionally a pupil used incorrect boundaries.

Part (iii) was generally done well. Some pupils added time on at the end not realising the function given would give the exact time. A number of students had algebra problems right at the very end.

Just for this part, this was mostly ignored.

Q13 SOLUTIONS

General feedback:

- Not enough care was taken to secure the full mark in one mark problems.
- On the flip side, responses to three and four mark problems were generally unnecessarily complicated.
- A. A particle moves in a straight line with acceleration $a = -5e^{\nu}$. The particle is initially at the origin with velocity 2 m/s.

I.	Show that the particle comes to rest when $t = \frac{1}{5}(1 - e^{-2})$.	2
----	---	---

Solution	Comment(s)
Since $a = \frac{dv}{dt}$:	Students generally performed well on this question.
$\frac{dv}{dt} = -5e^{v}$ $\frac{dt}{dv} = \frac{1}{-5e^{v}}$	
The particle comes to rest at $v = 0$, so: $t = \frac{1}{5} \int_{2}^{0} -e^{-v} dv$	
$= \frac{5}{5} \frac{J_2}{[e^{-\nu}]_2^0}$	
$= \frac{1}{5} [e^{-\nu}]_{2}^{0}$ = $\frac{1}{5} (e^{0} - e^{-2})$ = $\frac{1}{5} (1 - e^{-2})$	
$=\frac{1}{5}(1-e^{-2})$	

A II. Show that the particle stops when
$$x = \frac{1}{5}(1-3e^{-2})$$
.

Solution	Comment(s)
Since $a = v \frac{dv}{dx}$:	Trying to solve this problem using $v = \frac{dx}{dt}$ is about as
$v \frac{dv}{dx} = -5e^{v}$ $\frac{dv}{dx} = \frac{-5e^{v}}{v}$ $\frac{dx}{dv} = \frac{v}{-5e^{v}}$	efficient as trying to solve $x^2 = 1$ using the quadratic formula. Given the setup, using $a = v \frac{dv}{dx}$ instead is a much
dx v	Orven the setup, using $u = v \frac{dr}{dr}$ instead is a much
$\frac{1}{dv} = \frac{1}{-5e^v}$	simpler approach.
The particle stops at $v = 0$, so: $x = \frac{1}{5} \int_{2}^{0} -ve^{-v} dv$	
Using integration by parts: $U = v$ $V' = -e^{-v}$ $U' = 1$ $V = e^{-v}$	
$x = \frac{1}{5} \left([ve^{-v}]_2^0 - \int_2^0 e^{-v} dv \right)$	
$= \frac{1}{5} (-2e^{-2} - [-e^{-v}]_{2}^{0})$ $= \frac{1}{5} (-2e^{-2} + (1 - e^{-2}))$ $= \frac{1}{5} (1 - 3e^{-2})$	
$=\frac{1}{5}\left(-2e^{-2}+(1-e^{-2})\right)$	
$=\frac{1}{5}(1-3e^{-2})$	

III. Describe the motion.

Solution	Comment(s)
Since $e^{\nu} > 0$, $a < 0$, so the acceleration of the particle is always decreasing.	 Common error(s): Not mentioning the particle's movement in the negative direction after reaching its
Furthermore, the initial velocity is positive, so it will move while slowing down in the positive direction until it reaches the maximum displacement found in Part II at the time found in Part I.	 Describing the motion as SHM.
After that, the particle will move in the negative direction while speeding up indefinitely.	

B. A sequence $u_1, u_2, u_3...$ is such that for $n \in \mathbb{Z}^+$:

$$u_1 = \frac{1}{4}$$
, $u_{n+1} = u_n + \frac{1}{n(n+1)} + 2^{-n}$

I. Prove by mathematical induction that for $n \in \mathbb{Z}^+$:

$$u_n = \frac{9}{4} - \frac{1}{n} - 2^{-n+1}$$

Solution	Comment(s)
Base Case: Prove true for $n = 1$. $u_1 = \frac{9}{4} - \frac{1}{1} - 2^{-1+1}$ $= \frac{9}{4} - 1 - 2^0$ $= \frac{1}{4}$ Hence, true for $n = 1$.	Students generally performed well on this question.
Induction Hypothesis: Assume true for $n = k$. $u_k = \frac{9}{4} - \frac{1}{k} - 2^{-k+1}$	
Inductive Step: Prove true for $n = k + 1$, i.e. Prove that: $u_{k+1} = \frac{9}{4} - \frac{1}{k+1} - 2^{-(k+1)+1}$ $= \frac{9}{4} - \frac{1}{k+1} - 2^{-k}$	
Using the given expression for u_{n+1} and the expression for u_k from the induction hypothesis: $u_{k+1} = u_k + \frac{1}{k(k+1)} + 2^{-k}$ $= \frac{9}{4} - \frac{1}{k} - 2^{-k+1} + \frac{1}{k(k+1)} + 2^{-k}$ $= \frac{9}{4} - \left(\frac{1}{k} - \frac{1}{k(k+1)}\right) - \left((2 \times 2^{-k}) - 2^{-k}\right)$ $= \frac{9}{4} - \left(\frac{k+1-1}{k(k+1)}\right) - 2^{-k}(2-1)$ $= \frac{9}{4} - \frac{1}{k+1} - 2^{-k}$	
Hence, by the principle of mathematical induction: $u_n = \frac{9}{4} - \frac{1}{n} - 2^{-n+1}$	

Solution	Comment(s)
From Part I:	Alternatively, as $n \to \infty$:
$u_n = \frac{9}{4} - \frac{1}{n} - 2^{-n+1}$ $= \frac{9}{4} - \left(\frac{1}{n} + 2^{-n+1}\right)$	$\frac{\frac{1}{n} + 2^{-n+1} \to 0^{+}}{\frac{9}{4} - \left(\frac{1}{n} + 2^{-n+1}\right) \to \left(\frac{9}{4}\right)^{-}}$
Recognise that $\frac{1}{n} + 2^{-n+1} > 0$ for $n \in \mathbb{Z}^+$, so: $-\left(\frac{1}{n} + 2^{-n+1}\right) < 0$	$u_n \to \left(\frac{9}{4}\right)^-$ $\therefore u_n < \frac{9}{4}$ \sim
$-\left(\frac{1}{n}+2^{-n+1}\right) < 0$ $\frac{9}{4} - \left(\frac{1}{n}+2^{-n+1}\right) < \frac{9}{4}$ $\therefore u_n < \frac{9}{4}$	Common error(s): • Not mentioning the direction that $\frac{1}{n} + 2^{-n+1}$ is approaching 0 from.

C. The equation of motion for a particle is given by:

$$\frac{dv}{dt} = -n^2 x$$

where n is a positive constant, x is the displacement at time t and v is the velocity at time t.

I. Show that $v^2 = n^2(A^2 - x^2)$, where A is a constant, satisfies the above equation.

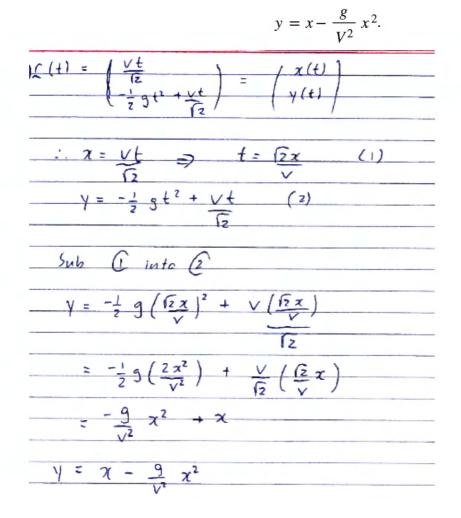
Solution	Comment(s)
Since $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = a = \frac{dv}{dt}$: $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = \frac{d}{dx}\left(\frac{1}{2}n^2(A^2 - x^2)\right)$ $= \frac{d}{dx}\left(\frac{1}{2}n^2A^2 - \frac{1}{2}n^2x^2\right)$ $= \frac{-2}{2}n^2x$ $= -n^2x$	 Most students don't seem to understand that showing Equation A satisfies Equation B means that you can start from A. This might explain the number of responses that tried to solve the problem using integration instead of differentiation. Regardless, this is a concerning trend, considering that students were taught how to approach this in ME1 exponential growth and decay problems. Common error(s): Arbitrarily assigning the constant of integration <i>c</i> to the constants <i>A</i> and <i>n</i> instead of using the fact that <i>x</i> = <i>A</i> when <i>v</i> = 0.

C. II. If the particle is initially at the origin, find the first time that the particle's speed is half its maximum speed.

4

	T
Solution	Comment(s)
Since $a = -n^2 x$, the particle is undergoing simple	Alternatively, since $v^2 = n^2(A^2 - x^2)$ is a concave
harmonic motion.	down parabola translated up by $n^2 A^2$ units, its vertex
As the particle is initially at the origin, its equation of motion can be modelled by $x = A \sin nt$. Differentiating to find the velocity: $\dot{x} = An \cos nt$	is at $(0, n^2 A^2)$. Solving $v^2 = n^2 A^2$ then gives the maximum velocity $v = An$, as $v = -An$ gives the minimum velocity. The solution then proceeds as shown previously.
The amplitude of \dot{x} is An , which is the maximum velocity, so:	~
$\frac{An}{2} = An \cos nt$ $\cos nt = \frac{1}{2}$ $nt = \frac{\pi}{3} + 2k\pi \qquad nt = \frac{5\pi}{3} + 2k\pi$	Although a fair portion of students received full marks, they tended to waste time by taking convoluted approaches.
$nt = \frac{\pi}{3} + 2k\pi$ $nt = \frac{5\pi}{3} + 2k\pi$	Common error(s):Finding an expression for the displacement instead of time.
The first time that the particle's velocity is half of its	
maximum velocity occurs in the first quadrant of the	
first revolution, so: π	
$nt = \frac{\pi}{3} + 2k\pi$	
k = 0	
$\pi = 0$ π	
$\therefore nt = \frac{1}{3}$	
$t = \frac{\pi}{2}$	
k = 0 $\therefore nt = \frac{\pi}{3}$ $t = \frac{\pi}{3n}$	

End of Question 13 Solutions


(a) A particle P is projected from the origin with initial speed V m/s at an angle 45° above the positive x-axis.

The position vector of the particle, $\mathbf{r}(t)$, where *t* is the time in seconds after the particle is projected, is given by

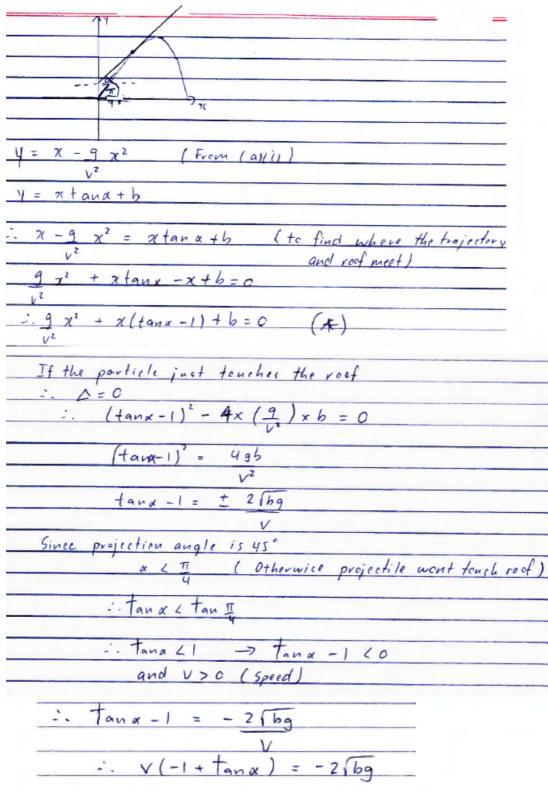
$$\mathbf{r}(t) = \begin{pmatrix} \frac{Vt}{\sqrt{2}} \\ -\frac{1}{2}gt^2 + \frac{Vt}{\sqrt{2}} \end{pmatrix}.$$

(Do NOT prove this)

(i) Show that the equation of the trajectory of *P* is

Marking Scheme	Marker's comments
2 marks – Correct solution	- This question was done well by majority of the candidates.
1 mark – Obtaining $t = \frac{x\sqrt{2}}{v}$	

2


(a) (continued)

The point of projection (the origin) is on the floor of a barn.

The roof of the barn is given by the equation $y = x \tan \alpha + b$, where b > 0, and α is an acute angle.

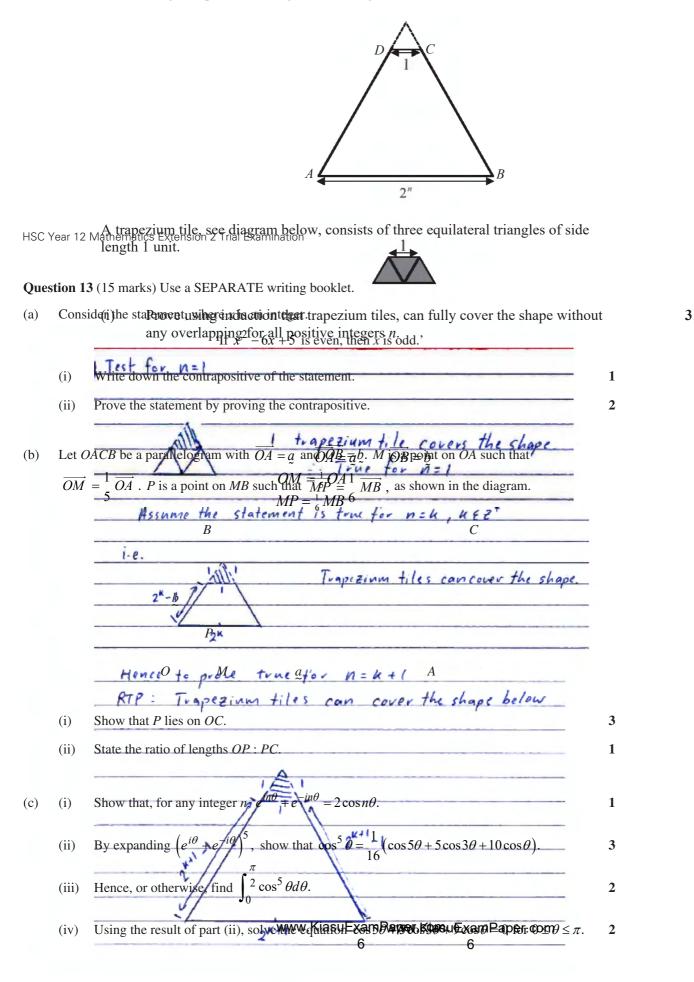
(ii) Show that, if the particle just touches the roof then

$$V(-1+\tan\alpha)=-2\sqrt{bg}\,.$$

2

(a) (ii) (continued)

Marking Scheme	Marker's comments
2 marks – Correct solution	- This question was not done well by many candidates.
1 mark – Correct working to obtain $\frac{g}{v^2}x^2 + x(\tan \alpha - 1) + b = 0.$	- Many candidates incorrectly assumed that the slope of the roof would touch the trajectory of the particle at the vertex, which did not lead to the desired result.
	- A significant number of candidates were penalised for not correctly justifying or even specifically addressing when $\tan \alpha - 1 = \pm \frac{2\sqrt{bg}}{v}$, why $\tan \alpha - 1 < 0$ in
	relation to the context of the question. Candidates need to refer to solution for proper reasoning.
	- Candidates who stated α is acute and hence why $\tan \alpha - 1 < 0$ is not entirely correct as when $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$, $\tan \alpha - 1 > 0$.
	 Some candidates were incorrectly manipulating their work to achieve the desired result. Candidates should ensure that if their solution does not yield the correct result, they should review their work rather than "fudge" their working.


(a) (continued)

(iii) If this condition is satisfied, find, in terms of α , V, and g, the time after projection at which touching takes place.

Using the result (*) in (a)(ii) $x^2 + x(tanx - 1) + b = c$ 9 V2 4gb V2 and $A = (tan-1)^2 -$ = 0 7(= - (tanx -1) ± (tanx -1)2 - 49b VZ quadratic 21 9 Formula V2 -tank)V2 11 7 = 29 2 Also t = 12 20 × = v(t)-> 52 Sub 1 into 2 t: 1-tona)v2 2 29 EV = 1-tand seconds 29

Marking Scheme	Marker's comments
2 marks – Correct solution	- Many candidates were not successful in this question, particularly if they were not able
1 mark – Substantial progress to correct solution.	to achieve the result in (ii).

(b) A shape ABCD is formed by taking an equilateral triangle of side length 2^n (*n* is a positive integer) and removing an equilateral triangle of side length 1 from one of its corners.

(b) (i) (continued)

An equilateral triangle with side length 2"+1 can be made up of 4 equilateral triangles with side length 2" as shown below. YATI + 1 G 6 6 2" -1 24+1 As the equilateral triangle above can be filled with 4 2" triangles which are assumed true to be filled with the trapezium tiles, the gap shown from the configuration above can be filled with an additional trapezium tile. i. True for n= k+1 . The statement is proven tone by Mathematical Induction for all positive integers n.

Marking Scheme	Marker's comments
3 marks – Correct proof	- Many candidates were not successful in proving the $n = k + 1$ case.
 2 marks – Shows substantial relevant progress in proving the case for n = k + 1. 1 mark – Establish the result for n = 1 and include a diagram. 	Common issues included failing to properly utilise the assumption in their proof, relying on excessive and irrelevant statements or diagrams without providing a clear and logical argument, or demonstrating a lack of understanding of how to approach the proof.
	 Candidates are encouraged to use diagrams as part of their proof, especially with Mathematical Induction involving geometry.

rear 12 Mathematics Extension 2 materian algonown above), can fully cover the snape without any overlapping for all positive integers n. integers n. [5]

stion 13 (ii) Hence explain why a regular hexagon with side length 2" can be fully covered by these trapezium tiles, and determine in terms of management of tiles required. [4] Consider the statement, where x is an integer. [4] (continued) (If $x^2 - 6x + 5_{D}$ is even, then x is odd.' **(b)**

(a) A function is planeave on an interval if its second derivative is negative live interval. Write down the contration is the second of the second derivative is negative within the interval. Show esentime interval in the second and the second derivative is negative within the interval. [1] [1] (i) ve using induction that trapezium tiles, the consisting of three equilateral triangles of side 2

the state of the state of the state of the shape without any exertanning for all positivensen's inequality Jensen's inequality of the state of the s gers n. states that

states that Let OACB be a parallelogram with OA = a and OB = ab. M is point on OA such that ace explain why a regular hexagon with side length 2^n_x can be full neovered by these rezont tiles OAd determinent on tamps of incharge of the less subweight the diagram $n \xrightarrow{4}{i=1}^{x_i}$

and equality holds if and $MP_{i=1} MB_{i=1}^{i} MB_{i=1}^{i}$ if $\chi_{0} may$ use this result without proof esult without proof. B

unction is coldave Gran and intervaling and and a society of the salies of the salies of the sale of the society of the societ w that sin x is concaver for (9, greater than or equal to 3, use the state of the s for $\sin\theta_1 + \sin\theta_2 + \frac{1}{100} \sin\theta_1 + \frac{1}{100} \sin\theta_2 + \frac{1}{100} \sin\theta_n$ in terms of *n*. [2] is concave in an interval and x_1, x_2, \dots, x_n are elements in the interval, Jensen's inequality it h By selecting in suitable function fourtable range in guality etsederive the AM-GM (ii) es that inequality inequality 1 equality holds if and only if $x_i = x_i = 1$ and $x_i = 1$ by $x_i = 1$ and $x_i = 1$ by $x_i = 1$ and $x_i = 1$ by x_i [3] (i) $\theta_1, \theta_2, \dots, \theta_n$ are the interior angles (in radians) of a convex polygon with n sides (iii)her Shis Theatin atime participation and a sugar diffied aby an obtain an in any positive for any positive for $\sin\theta_1 + \sin\theta_2 + \dots + \sin\theta_n$ in terms of *n*. integer *n*. (By solvering an formulation for the second structure of the second structure 1 f31 [3] By explindings (dimonnal)) consistent integers of the statistic (ii) [3] for any positive real filling the sequence of [2] (iii) 4x 5m=1 + 1 = 419820/01/18 7t ··· 19820/01/18 + 4 + 1 AJC 2018 AJC 2018 function g is defined by g(n) = 1 www. Klasu kan benever the providence of the pr 2 This is a GP with a=1, r=4, M=N ger n. 1 (4"-1) Su= Show that g(n) < d(n)[3] Use binomial theorem to show that $\overline{g(n)} \leq e^2$ for all positive integers n. [3] Explain why the sequence $\{g(1), g(2), g(3), ...\}$ must tend to a limit. The hexagon will have 6x5, +2 9820/01/18 www.KiasuExamPaper.com

(b) (ii) (continued)

Marking Scheme	Marker's comments
3 marks – Correct explanation of why regular hexagon with side length of 2^n can be fully covered by trapezium tiles AND correct solution in finding n .	 This question was not done well by many candidates. Some candidates struggled to explain why regular hexagon with side length of 2ⁿ can be fully covered by trapezium tiles
2 marks – Correct explanation and shows some relevant progress in finding <i>n</i> or equivalent merit.	 especially when they struggled in proving in part (i). Significant number of candidates were not successful in finding <i>n</i> with some not
1 mark – Correct explanation or shows some relevant progress in finding <i>n</i> .	considering that a single trapezium consists of 3 equilateral triangles of side length 1 unit or silly errors. Others simply struggled to find the correct solution.

•\	7 (a) A Sl	function is concave on an interval if its second derivative is negative within 1 (a) A function is concave on an interval if its second derivative iow that sin x is concave for $(0, \pi)$ and $\ln x$ is concave for $(0, \infty)$. Show that sin x is concave for $(0, \pi)$ and $\ln x$ is concave for (fon that trapezium tiles, each consisting of three equilateral triangles of side	the interval. is negative within the inter $0, \infty)$.
1)	leng Question wla	POPER Real fully a cover the shape without any overlapping for all positive x_{1} sent interval and $x_{1}, x_{2}, \dots, x_{n}$ are elements in t	's inequality he interval, Jensen's inequ
ii)	(c) Let O Hence explain wh trapezion tiles 34	the states that states that $\overrightarrow{OAB} = aband \overrightarrow{OB} = b$ ACB be a parallelogram with $\overrightarrow{OAB} = aband \overrightarrow{OB} = b$ y a regular hexagon with side length 2^n_x can be fully be overed by the second states a state of 2^n_x can be fully be overed by $f(x_i) \le f\left(\frac{1}{n}\right)^{4} x_i$, where $aba = aba a b a b a b a b a b a b a b a $	
	r is a af	point on <i>MB</i> such that $MP = \frac{1}{2}MB$, \tilde{G}_{as}^{as} shown below may use this result without and equality holds if and only if $x_1 = x_2 = \dots = x_n$. You may use	ut proof se this fesult without proof
a)	Show that $\sin x$ is	ave $\int \theta dtervel{f}$ and $\int \theta dtervel{f}$ are subscripted in the interval of $\theta dtervel{f}$ and $\int \theta dtervel{f}$	with weidesolygon with <i>n</i> si any house of the side of
	If f is concave in an	interval and $x_1, x_2,, x_n$ are elements in the interval Jensen's inequality	
	states that (ii	inequality $\frac{1}{M}\sum_{i=1}^{n}\frac{f(x_i) \leq d_1}{d_2} \leq \frac{d_1}{m} \leq \frac{1}{m}\sum_{i=1}^{n}\frac{f(x_i) \leq d_1}{d_2} \leq \frac{d_1}{m} \leq \frac{1}{m}\sum_{i=1}^{n}\frac{d_1}{m} \leq \frac{d_1}{m} \leq \frac{d_1}{m} \leq \frac{1}{m}\sum_{i=1}^{n}\frac{d_1}{m} \leq \frac{d_1}{m} \leq \frac{1}{m}\sum_{i=1}^{n}\frac{d_1}{m} \leq \frac{1}{m}\sum_{i=1}^{n}\frac{d_1}{m} \leq \frac{1}{m}\sum_{i=1}^{n}\frac{d_1}{m}\sum_{i$	-
	and equality holds	if and only if $x_1 = x_2 = x_1 = x_2$. You may use this result without proof. for any positive real or any positive real mumbers a_1, a_2, \dots, a_n and any positive and the positive positive provides the positive positive provides the provides	ive integet h.
	where h is T	, Showethat Microon QCes (in radians) of a convex polygon with n sides, eaternation (B) is used of the defined aby graphant in the side of the second state of the	
	for $\sin \theta_1 + \sin \theta_1$	(pp) parametogram are equal	_
	(ii) By selecting inequality	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$	_ [3]
	(ii	= b + a	tive integels n.
	for any posit	$\overrightarrow{OM} = \pm \overrightarrow{OA} = \pm a$	_nd to a li[24]t.
b)	AJC 2018 The function g is	$\overline{MB} = \overline{MO} + \overline{OB}$	
,	integer <i>n</i> .	$MB = MO + OB$ $= -\frac{1}{2}a + b$	-
	(i) Show that g		_
		$\overline{MP} = \frac{1}{6} \overline{MB} = \frac{1}{6} \left(-\frac{1}{5} \frac{1}{3} + \frac{1}{6} \right) = -\frac{1}{30} \frac{1}{30} + \frac{1}{6} \frac{1}{6}$	_
	(II) Use binomia	$\therefore \overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{MP}$	_
	(iii) Explain why	$= \frac{1}{5}a + \left(-\frac{1}{30}a + \frac{1}{6}b\right)$	-
		·	-
		$= \frac{1}{6} \frac{a}{2} + \frac{1}{6} \frac{b}{6}$	-
		$=\frac{1}{6}(\underline{a}+\underline{b})$	-
		$= \frac{1}{6} \overline{oc}^2$	-
		Guere The = 1 The where 1 ER	
		Since OP = 1 OC where LER . OP 11 OC with a common point	0
		: O, Pand Care collinear	
		- Plies on OC	

gers <i>n</i> .	states that	$[\mathbf{J}]^{-1} = [\mathbf{J}]^{-1} = $	
Let O	states that ACB be a parallelogram with $OA = a$ and $O\overline{AB} = b$. M is \overline{BB} ain why a regular hexagon with side length $2^n_{, can}$ ACB be a parallelogram with $A = a$ and $\overline{AB} = b$. M is \overline{BB} . ain why a regular hexagon with side length $2^n_{, can}$ AB be a parallelogram with $A = a$ and $\overline{AB} = b$. M is \overline{BB} .	\mathcal{B} and $\mathcal{O}A$ such that	
ice exp	lain why a regular hexagon with side length $f(x)$	pe^{1} N $[y] = pvered by these [x_{i}] = y_{41}x_{i}$	
~4 6 94441	$MP = \frac{1}{2}MB_{10}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	
	(c) and $quality continued) equality holds if and only i$	f $X_1 = X_2$ use this result without proof $X_1 = X_2 = X_n$. You may use this result without proof.	
unation	is actional Indentary and are the interior anyles (in	\underline{C}	
		Endiates and the standard of With Neider Solygon with n side Requarites a standard of the sta	
	3 marks 19t Singlet Singlet Singlet Sont in 0+ un forms of n		na [2]
is conca	ve in an interval and justification elements in the in	nterval, Jensen's inequality]
es that	(ii) By selecting supple function fullsele	ensite for in equality the elective the AM-GI	М
I	2 marks institution relevant proloness	/ - Candidates should give brief explanation	
	$\bigcup_{n \\ n \\$	$= \frac{a_1 \overline{a_1 a_2 \cdots a_n} + q_n}{A_1 \overline{a_1 a_2} \overline{OP}_n \overline{a_1 a_2} \overline{OCa_p}}$ r equivalent merit, then	
equalit	A mark – Obtaining $OC = \underline{a} + b = x$. You may use the for any positive real or under the formula of OC	nistresult without proof m	
()	Tot any positive real of any p	bersha ₁ , haze international positive integer in.	[3]
If θ_1 ,	$\theta_2, \ldots, \theta_n$ are the interior angles (in radians) of a con-	$\frac{1}{1}$ nvex polygon with <i>n</i> sides, $\frac{1}{1}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	
(iii)her	sphis theatin stinn with a start with a subsect of fragtality	$\frac{1}{2}$ $\frac{1}$	ve
for s	$\sin \theta_1 + \sin \theta_2 + \ldots + \sin \theta_n$ in terms of <i>n</i> . (i) ^{inte} State the ratio of the set <i>n OP</i> : <i>PC</i> .		
	(11) IIIIUS to the ratio at Designation () P · P()	1	
		ⁿ to derive the AMCM 1	
	Slooting 22 = (22	$\frac{1}{1}$ to derive the AM-GM 1 [3] [3]	[3]
(By s inequ	Shooting $\overrightarrow{OP} = \underbrace{\overrightarrow{OC}}_{6}$ $\underbrace{\overrightarrow{OP}}_{1} = \underbrace{\overrightarrow{OC}}_{1}$ $\underbrace{\overrightarrow{OP}}_{1} = \underbrace{\overrightarrow{OC}}_{1}$ $\underbrace{\overrightarrow{OP}}_{1} = \underbrace{\overrightarrow{OC}}_{1}$ $\underbrace{\overrightarrow{OP}}_{1} = \underbrace{\overrightarrow{OC}}_{1}$		[3] [3]
(By s inequ (ii)	Shooting $\overrightarrow{OP} = \pm \overrightarrow{OC}$ iality $\overrightarrow{OP} = \pm \overrightarrow{OC}$ By ex(ii) $\overrightarrow{PC} = \pm \overrightarrow{OC}$ $\overrightarrow{PC} = \pm \overrightarrow{OC}$ $\overrightarrow{OP} = \pm \overrightarrow{OP}$ $\overrightarrow{OP} = \mp \overrightarrow{OP}$ $\overrightarrow{OP} = \mp \overrightarrow{OP}$ $\overrightarrow{OP} = \mp \overrightarrow{OP}$ $\overrightarrow{OP} = \overrightarrow{OP}$ \overrightarrow{OP} $\overrightarrow{OP} = \overrightarrow{OP}$ \overrightarrow{OP} $\overrightarrow{OP} = $	entralize (11) course integels n. [.	
(By s inequ (ii)	Shooting $\overrightarrow{OP} = \frac{1}{6} \overrightarrow{OC}$ hality $\overrightarrow{OP} = \frac{1}{6} \overrightarrow{OC}$ By expire $\overrightarrow{PC} = \frac{1}{6} \overrightarrow{OC}$ $\overrightarrow{OP} = \frac{1}{6} \overrightarrow{OC}$ $\overrightarrow{OP} = \frac{1}{6} \overrightarrow{OC}$ $\overrightarrow{OP} = \frac{1}{6} \overrightarrow{OC}$ $\overrightarrow{OP} = \frac{1}{6} \overrightarrow{OC}$	entralianes (11) cost for sull positive integels n. [.	[3]
(By s inequ (ii) for an (iii) AJC 2011	Shooting $\overrightarrow{OP} = \frac{1}{6} \overrightarrow{OC}$ $\overrightarrow{OP} = \frac{1}{6} \overrightarrow{OC}$ $\overrightarrow{Iatsg(n)} \xleftarrow{Iatsg(n)} Iatsg$	finter (19) equal (1	[3]
(By s inequ (ii) for an (iii) AJC 2011 function	Shooting $\overrightarrow{OP} = \pm \overrightarrow{OC}$ iality $\overrightarrow{OP} = \pm \overrightarrow{OC}$ By extrin. $\overrightarrow{PC} = \pm \overrightarrow{OC}$ int $\overrightarrow{S(n)} \leftarrow (\overrightarrow{Im})$ By extrin. $\overrightarrow{PC} = \pm \overrightarrow{OC}$ int $\overrightarrow{OP} = \pm \overrightarrow{OC}$ int $\overrightarrow{S(n)} \leftarrow (\overrightarrow{Im})$ int S	finter (19) equal (1	[3]
(By s inequ (ii) for an (iii) AJC 201: function ger <i>n</i> .	Shooting $OP = \pm \overline{OC}$ hality $OP = \pm \overline{OC}$ by extring $PC = \pm \overline{OC}$ hy positi Hence, $(-, -) PC = \pm \overline{OC}$ AJC 2018 By extring the result of part (ii), solve www.extring the result of	$\begin{array}{c} & & & \\ \hline & & \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	[3]
(By s inequ (ii) for an (iii) AJC 201: function ger <i>n</i> .	Shooting $\overrightarrow{OP} = \pm \overrightarrow{OC}$ iality $\overrightarrow{OP} = \pm \overrightarrow{OC}$ By ex(ii) $\overrightarrow{PC} = \pm \overrightarrow{OC}$ iv positi Hence, $(-, \overrightarrow{OP} : \overrightarrow{PC} = 1:5$ AJC 2018 Using the result of part (ii), $= (1 \pm 1)$ Marking Scheme	$\frac{1}{2} \frac{1}{2} \frac{1}$	[3]
(By s inequ (ii) for an (iii) AJC 2011 function ger <i>n</i> . Show	Shooting $OP = \pm \overline{OC}$ iality $OP = \pm \overline{OC}$ By extrip $OP = \pm \overline{OC}$ is extrip $PC = \pm \overline{OC}$ is defined by $g(n) = \pm 1 \pm 5$ AJC 2018 G Marking Scheme 1 mark - Correct ⁿ answer that $g(n) < 1 + -$	$\frac{1}{2} \frac{1}{2} \frac{1}$	[3]
(By s inequ (ii) for an (iii) AJC 2011 function ger <i>n</i> . Show Use b	Showing $OP = \frac{1}{6} OC$ By extrine $OP = \frac{1}{6} OC$ By extrine $PC = \frac{5}{6} OC$ by positive states in equality Hence, C , $OPI : IPCI = 1:5$ By extrine $IPCI = $	$[2] for all a contract positive integers n. [2] for all a contract positive integers n. [2] for all a contract positive integers n. [2] for a limit pust tend to a limit pust tend to a limit provide the integers \pi. 2[2] for all a contract pust provide a contract positive for a contract provide a contract provi$	[3]
(By s inequ (ii) for an (iii) AJC 2011 function ger <i>n</i> . Show Use b	Showing $OP = \frac{1}{6} OC$ By extrip $OP = \frac$	$[2] for all a contract positive integers n. [2] for all a contract positive integers n. [2] for all a contract positive integers n. [2] for a limit pust tend to a limit pust tend to a limit provide the integers \pi. 2[2] for all a contract pust provide a contract positive for a contract provide a contract provi$	[3]
(By s inequ (ii) for an (iii) AJC 2011 function ger <i>n</i> . Show Use b	Showing $OP = \frac{1}{6} OC$ By extrip $OP = \frac$	$[2] for all a contract positive integers n. [2] for all a contract positive integers n. [2] for all a contract positive integers n. [2] for a limit pust tend to a limit pust tend to a limit provide the integers \pi. 2[2] for all a contract pust provide a contract positive for a contract provide a contract provi$	[3]

6

TEN_Y12_MExt2_QB_2021

Copyright © 2021 Neap Education Pty Ltd

2

A hose situated at the origin sprays water with initial speed u m/s (a) and at angle of θ to the positive *x*-axis.

The hose sprays water to a height of 80 m.

We will consider the motion of one water particle in the spray.

Assuming no air resistance, the position vector of the particle, r(t), (i) where t is the time in seconds after the water starts to spray, is given by

 $\underline{r}(t) = \begin{pmatrix} ut \cos \theta \\ \\ -5t^2 + ut \sin \theta \end{pmatrix}.$ (Do NOT prove this.)

Show that $u \sin \theta = 40$.

$$y = -5t^2 + ut\sin\theta$$
$$\dot{v} = -10t + u\sin\theta$$

Maximum height when $\dot{y} = 0$

$$\dot{y} = 0 \Rightarrow t = \frac{u \sin \theta}{10}$$

$$\therefore y_{\text{MAX}} = -5 \left(\frac{u \sin \theta}{10}\right)^2 + u \left(\frac{u \sin \theta}{10}\right) \sin \theta$$

$$= -\frac{u^2 \sin^2 \theta}{20} + \frac{u^2 \sin^2 \theta}{10}$$

$$= \frac{u^2 \sin^2 \theta}{20}$$

$$\therefore \frac{u^2 \sin^2 \theta}{20} = 80 \Rightarrow u^2 \sin^2 \theta = 1600$$

$$\therefore u^2 \sin^2 \theta = 40 \qquad (u \sin \theta > 0)$$

Comment: This was generally done well.

(a) (continued)

Taking into account air resistance, the acceleration, \underline{a} , of a water drop is given by

$$\underline{a}(t) = \begin{pmatrix} -0.2\dot{x} \\ \\ -10 - 0.2\dot{y} \end{pmatrix},$$

where *x* and *y* refers to the horizontal and vertical displacement respectively of a water drop at time *t* seconds.

(ii) Show that
$$y = -5(50 + u\sin\theta)e^{-0.2t} - 50t + 5(50 + u\sin\theta)$$
. 4

Method 1:

$$\frac{dv}{dt} = -10 - \frac{1}{5}v$$

$$= -\frac{50+v}{5}$$
$$\therefore \frac{1}{50+v} \, dv = -\frac{1}{5} \, dt$$

Note as v > 0 then 50 + v > 0

$$t = 0, v = u \sin \theta$$

$$\therefore \int_{u\sin\theta}^{v} \frac{1}{50+V} \, dV = -\frac{1}{5} \int_{0}^{t} dt$$

$$\therefore \left[\ln \left(50 + V \right) \right]_{u \sin \theta}^{v} = -\frac{1}{5} \left(t - 0 \right)$$

$$\therefore \ln(50+v) - \ln(50+u\sin\theta) = -\frac{1}{5}t$$

$$\therefore \ln\left(\frac{50+v}{50+u\sin\theta}\right) = -0.2t$$

$$\therefore \frac{50+v}{50+u\sin\theta} = e^{-0.2t}$$

$$\therefore 50 + v = (50 + u\sin\theta)e^{-0.2u}$$

$$\therefore v = (50 + u\sin\theta)e^{-0.2t} - 50$$

(continued)

(a) (ii) **Method 1** (continued)

$$\frac{dy}{dt} = (50 + u\sin\theta)e^{-0.2t} - 50$$

$$t = 0, y = 0$$

$$\therefore \int_{0}^{y} dY = \int_{0}^{t} (50 + u\sin\theta)e^{-0.2t} - 50 dT$$

$$\therefore y - 0 = \left[-5(50 + u\sin\theta)e^{-0.2t} - 50t\right]_{0}^{t}$$

$$\therefore y = -5(50 + u\sin\theta)e^{-0.2t} - 50t - \left[-5(50 + u\sin\theta) - 0\right]$$

$$\therefore y = -5(50 + u\sin\theta)e^{-0.2t} - 50t + 5(50 + u\sin\theta)$$

Method 2: Same start as Method 1

$$\therefore \int \frac{1}{50+v} dv = -\frac{1}{5} \int dt$$

$$\therefore \ln (50+v) = -\frac{1}{5}t + C \qquad [t = 0, v = 50 + u \sin \theta]$$

$$\therefore C = \ln (50+v)$$

$$\therefore \ln (50+v) - \ln (50+u \sin \theta) = -\frac{1}{5}t$$

$$\therefore \ln \left(\frac{50+v}{50+u \sin \theta}\right) = -0.2t$$

$$\therefore \frac{50+v}{50+u \sin \theta} = e^{-0.2t}$$

$$\therefore 50+v = (50+u \sin \theta)e^{-0.2t}$$

$$\therefore v = (50+u \sin \theta)e^{-0.2t} - 50$$

(continued)

(a) (ii) **Method 2** (continued)

Now
$$\frac{dy}{dt} = (50 + u\sin\theta)e^{-0.2t} - 50$$

 $\therefore \int dy = \int_0 (50 + u\sin\theta)e^{-0.2t} - 50 dt$
 $\therefore y + C_1 = -5(50 + u\sin\theta)e^{-0.2t} - 50t$ $[t = 0, y = 0]$
 $\therefore C_1 = -5(50 + u\sin\theta)$
 $\therefore y = -5(50 + u\sin\theta)e^{-0.2t} - 50t - C_1$
 $\therefore y = -5(50 + u\sin\theta)e^{-0.2t} - 50t + 5(50 + u\sin\theta)$

Comment: Many students' work is unreadable and the setting out is hard to follow. It is not up to the marker to try and work out the students' logic.

You must present your arguments clearly

Students should simplify at each step before continuing.

Some students obviously didn't read the question properly and started on the horizontal components of the motion.

Students need to put in all the steps, but many found this hard with their bad setting out. Bad handwriting is one thing, but atrocious setting out takes all this to another level.

(continued)

(a) (continued)

(iii) Hence show that
$$y = 5\left[-\dot{y} + u\sin\theta + 50\ln\left(\frac{10 + 0.2\dot{y}}{10 + 0.2u\sin\theta}\right)\right]$$
 3

From (a) (ii):

(1):
$$\dot{y} + 50 = (50 + u\sin\alpha) e^{-0.2t}$$

(2):
$$e^{-0.2t} = \frac{50 + \dot{y}}{50 + u \sin \alpha}$$
 and so

$$-0.2t = \ln\left(\frac{50 + \dot{y}}{50 + u\sin\alpha}\right)$$
(3): $t = -5\ln\left(\frac{10 + 0.2 \dot{y}}{10 + 0.2 u\sin\alpha}\right)$ [÷

Also (4): $y = -5 (50 + u \sin \alpha) e^{-0.2t} - 50t + 5(50 + u \sin \alpha)$

Substitute (1) & (3) into (4):

$$y = -5 (\dot{y} + 50) - 50 \times \left(-5 \ln \left(\frac{10 + 0.2\dot{y}}{10 + 0.2u \sin \alpha} \right) \right) + 5(50 + u \sin \alpha)$$
$$= 5 \left(-\dot{y} + 50 \ln \left(\frac{10 + 0.2\dot{y}}{10 + 0.2u \sin \alpha} \right) + u \sin \alpha \right) - 250 + 250$$
$$= 5 \left(-\dot{y} + 50 \ln \left(\frac{10 + 0.2\dot{y}}{10 + 0.2u \sin \alpha} \right) + u \sin \alpha \right)$$

5]

Comment: This is a 'Show that' and also "Hence" question. This is not the first time students have had such questions. Hopefully, the concept will sink in before the HSC.

> Students need to put in all the steps, but many found this hard with their bad setting out. Bad handwriting is one thing, but atrocious setting out takes all this to another level.

Students who opted for an alternative solution that did not rely on 'Hence' could not get full marks.

1

(a) (continued)

(iv) How high does the water from the hose reach now?

 $\dot{y} = 0$ for the maximum height and $u \sin \alpha = 40$

Using (iii):

$$H_{max} = \frac{1}{0.2} \left(40 + \frac{10}{0.2} \ln \frac{10}{40} \right)$$

Comment: Students had to write down a numerical result in order to get full marks. This was the whole reason why part (i) was asked.

Students were not penalised for an 'exact' answer, but they do have to realise that when you are giving the height of something like this, the best practice is to say the approximate value. If confused, students should write down the exact value and then the approximation.

(b) Suppose f and g are real-valued continuous functions defined on [0, a], where a > 0, satisfy the conditions: f(x) = f(a - x) and $g(x) + g(a - x) = m, \text{ where } m \in \mathbb{R}.$ (i) Show that $\int_{0}^{a} f(x) g(x) dx = \frac{m}{2} \int_{0}^{a} f(x) dx.$ 3

$$\int_{0}^{a} f(x) g(x) dx = \int_{0}^{a} f(a-x) [m-g(a-x)] dx \qquad \text{Let } y = a-x, \ \frac{dy}{dx} = -1$$

$$= \int_{a}^{0} f(y) [m-g(y)] (-1) dy$$

$$= \int_{0}^{a} f(y) [m-g(y)] dy$$

$$= m \int_{0}^{a} f(x) dx - \int_{0}^{a} f(x) g(x) dx$$

$$\therefore 2 \int_{0}^{a} f(x) g(x) dx = m \int_{0}^{a} f(x) dx$$

$$\int_{0}^{a} f(x) g(x) dx = \frac{m}{2} \int_{0}^{a} f(x) dx$$

Comment: Students cannot assume the result that many call 'King's Rule'. They have to prove it if they want to use it. This was made clear in the Task 3 Feedback.

As a result these students could only get a maximum of 2 marks.

From reading time, students would have needed to prove this in Question 16, but they decided to just assume it here.

Students need to put in all the steps, but many found this hard with their bad setting out. Bad handwriting is one thing, but atrocious setting out takes all this to another level.

(b) (continued)

		¢π	
(ii)	Hence evaluate	$x\sin x\cos^4 xdx$.	3
	J	0	

Let
$$f(x) = \sin x \cos^4 x$$
 and $g(x) = x$,
then we have $f(\pi - x) = \sin(\pi - x)\cos^4(\pi - x)$
 $= (\sin x)[-\cos x]^4 = f(x)$

and $g(x) + g(\pi - x) = x + (\pi - x) = \pi = m$

Hence,
$$\int_0^{\pi} x \sin x \cos^4 x \, dx = \frac{\pi}{2} \int_0^{\pi} \sin x \cos^4 x \, dx$$

= $\frac{\pi}{2} \left[-\frac{\cos^5 x}{5} \right]_0^{\pi} = \frac{\pi}{2} \left[-\left(\frac{-1}{5} - \frac{1}{5}\right) \right] = \frac{\pi}{5}$

Comment: This question became much harder than the writer obviously intended.

Students could only gain marks if they had the right f, g and m, and especially $m \in \mathbb{R}$. As a result many students scored 0 on this question.

Students were not penalised for not justifying why the f and g above worked, but if they didn't then they usually fell into the trap below.

Some students had the correct numerical answer, but their logic/working was flawed. They made the problem into something that they knew could work out, WITHOUT any justification.

As a result these students were not successful in gaining any marks.

Students need to put in all the steps, but many found this hard with their bad setting out. Bad handwriting is one thing, but atrocious setting out takes all this to another level.

End of Question 15 Solutions

2

(a) Given
$$I_n = \int_0^1 (1-x)^n e^x dx$$
, where *n* is a non-negative integer.
(a) COMMENT:
It is important to show all steps with a
prove or show that question.
Students showed not expect full marks for
writing one line
 $I_n = \left[e^x \left(1-x\right)^n\right] + n \int_0^1 (1-x)^{n-1} x dx$
Many students struggled to use the
reduction formula in part (ii)
(i) Show that $I_n = -1 + n I_{n-1}$ for $n \ge 1$.

i)
$$I_n = \int ((1-x)^n e^{-x} dx$$

 $u = (1-x)^n$, $v' = e^{-x}$
 $u' = n(1-x)^{n-1} - 1 < v = e^{-x}$
 $I_n = \left[(1-x)^n e^{-x} \right] + n \int ((1-x)^n e^{-x} dx$
 $= (1-t)^n e^{-t} - (1-0)^n e^{-t} + n I_{n-1}$
 $= -1 + n I_{n-1}$

(a) (ii) Evaluate
$$\int_{0}^{1} (1-x)^{3} e^{x} dx$$
.

$$= I_{3}$$

$$= -1 + 3 \cdot I_{2}$$

$$= -1 + 3 \cdot (-1 + 2 \cdot I_{1})$$

$$= -1 - 3 + 6 \cdot I_{1}$$

$$= -4 + 6 \cdot (-1 + 1 \cdot I_{0})$$

$$= -4 - 6 + 6 \cdot I_{0}$$

$$= -(0 + 6 \cdot \int_{0}^{1} e^{x} dx$$

x

e

e -

6

e

6

F

+

=-10+6e-

= -16 + 6e

= -10+6

= -10

b) commENT:
A lot of students failed to appropriately
consider the absolute value.
A graph should have been considered
at some point.
Clearly flx) = x [cos x] >, 0 for [0, 2TT]
and so
$$\int_{0}^{2T} f(x)$$

(i) Prove that
$$\int_{0}^{a} f(a-x) dx = \int_{0}^{a} f(x) dx$$
, for constant *a*.

$$LHS = \int_{0}^{a} f(a-n) dx \qquad \text{iet } u=a-n$$

$$du = -1$$

$$dx = -du$$

$$when x=0 \qquad x=a$$

$$u=a \qquad u=0$$

$$= \int_{0}^{a} f(u) du$$

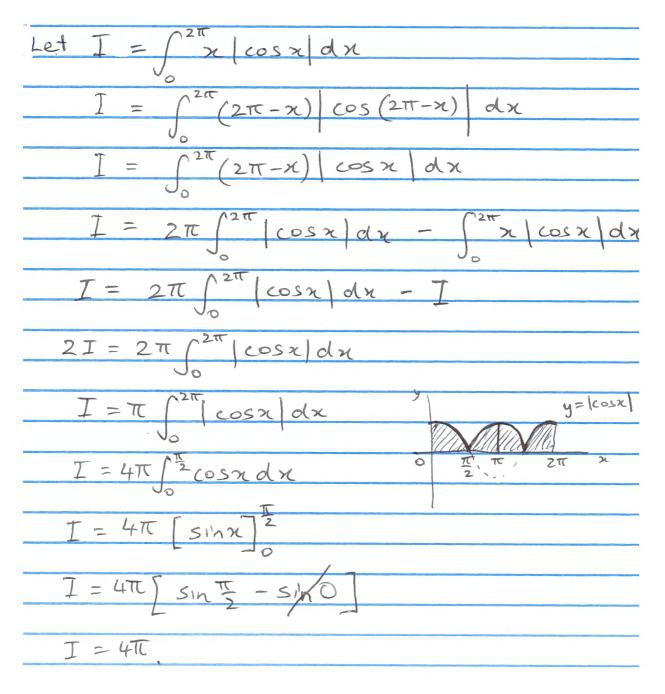
$$= \int_{0}^{a} f(u) du$$

$$= \int_{0}^{a} f(x) dx$$

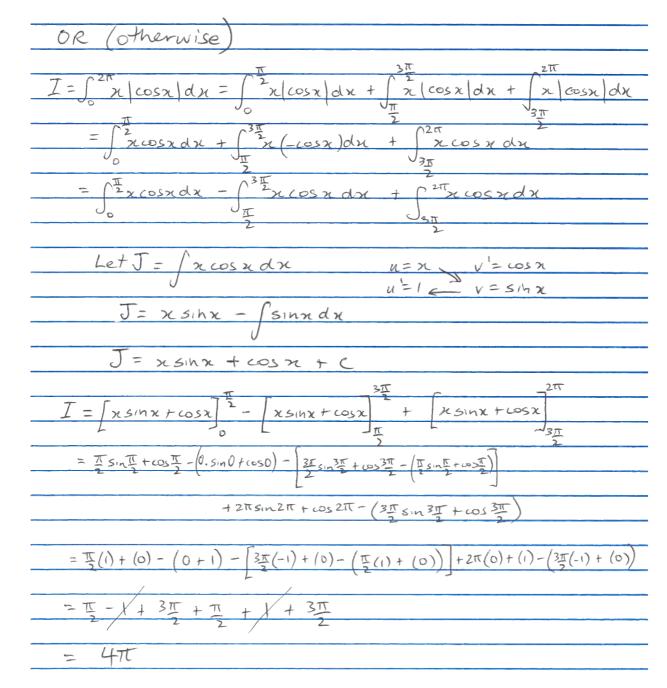
$$= RHS$$

$$OR \qquad y=f(a-x) \text{ is the reflection of } y=f(x)$$

$$= bout \qquad \text{the line } x=\frac{a}{2}$$


1

And so the signed area between the curve y = f(a-x) and the x-axis is equal to that between y = f(x) and the x-axis for [0,a]


$$\int_{0}^{a} f(a-x) dx = \int_{0}^{a} f(x) dx$$

(b) (ii) Hence or otherwise, evaluate
$$\int_{0}^{2\pi} x |\cos x| dx$$
. 3

Hence

(b) (ii) (continued)

(c) Let *n* be an integer, such that $n \neq 1$.

(i) Prove that
$$\sin \frac{\pi}{2n} \sum_{k=1}^{n-1} \sin \frac{k\pi}{n} = \cos \frac{\pi}{2n}$$

$$\begin{array}{rcl} LHS = & Sin \underline{\pi} & \overrightarrow{n} \\ & 2n & k=i \\ & 2n & k=i \\ \end{array}$$

$$= & \frac{\pi}{2} & Sin \frac{k\pi}{n} \cdot Sin \frac{\pi}{2n} \\ & k=i \\ \end{array}$$

$$= & \frac{\pi}{2} & \frac{1}{2} \left(\cos\left(\frac{k\pi}{n} - \frac{\pi}{2n}\right) - \cos\left(\frac{k\pi}{n} + \frac{\pi}{2n}\right)\right) \\ & k=i \\ \end{array}$$

$$= & \frac{1}{2} & \frac{\pi}{2n} & \left(\cos\left(\frac{(2k-i)\pi}{2n} - \cos\left(\frac{(2k+i)\pi}{2n}\right) - \cos\left(\frac{(2k+i)\pi}{2n}\right)\right) \\ & k=i \\ \end{array}$$

$$= & \frac{1}{2} \left[\cos\left(\frac{(2(i)-i)\pi}{2n} - \cos\left(\frac{(2(i)+i)\pi}{2n} + \cos\left(\frac{(2(i)-i)\pi}{2n} - \cos\left(\frac{(2(i)+i)\pi}{2n}\right)\right) - \cos\left(\frac{(2(i)+i)\pi}{2n} - \cos\left(\frac{(2(i)-i)\pi}{2n}\right) - \cos\left(\frac{(2(i)-i)\pi}{2n}\right) \\ & + & \cos\left(\frac{(2(n-i)-i)\pi}{2n} - \cos\left(\frac{(2n-i)\pi}{2n}\right)\right) \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} - \cos\left(\frac{2\pi}{2n} - \frac{\pi}{2n}\right) \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} - \cos\left(\frac{(2n\pi)\pi}{2n} - \frac{\pi}{2n}\right) \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} - \cos\left(\frac{\pi}{2n} - \frac{\pi}{2n}\right) \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} - \cos\left(\frac{\pi}{2n} - \frac{\pi}{2n}\right) \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} - \cos\left(\frac{\pi}{2n} - \frac{\pi}{2n}\right) \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} - \cos\left(\frac{\pi}{2n} - \frac{\pi}{2n}\right) \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} - \cos\left(\frac{\pi}{2n} - \frac{\pi}{2n}\right) \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n} \right] \\ \\ = & \frac{1}{2} \left[\cos\frac{\pi}{2n} + \cos\frac{\pi}{2n}$$

(c) (i) (continued)

COMMENT:)i) C Moving the constant SINT the into application summation means one the products rences 01 to sums or diffe con done be that Given the result working we are single term towards is a we should expect ferms of most the 40100 ang to cancel Séries

(c) (ii) Let
$$\alpha = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$$
.
Prove that $\sum_{k=1}^{n-1} |\alpha^k - 1| = 2 \cot \frac{\pi}{2n}$.

$$\frac{|\alpha^k - 1| = |(\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n})^k - 1|$$

$$= |\cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} - 1|$$

$$= |2 \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} - 1|$$

$$= |2 \cos \frac{k\pi}{n} + i \cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n}|$$

$$= |2 \sin \frac{k\pi}{n} (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})|$$

$$= |2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})|$$

$$= |2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})|$$

$$= 2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})$$

$$= 2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})$$

$$= 2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})$$

$$= 2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})$$

$$= 2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})$$

$$= 2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})$$

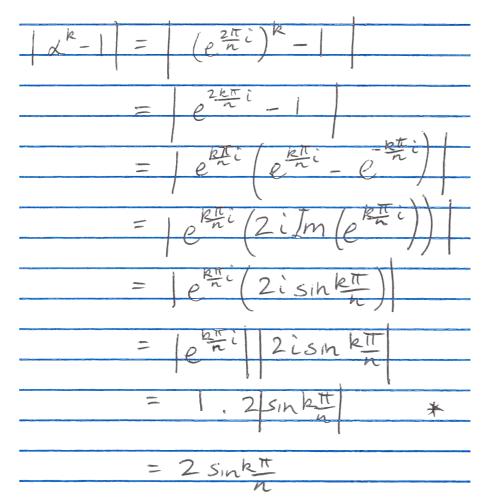
$$= 2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})$$

$$= 2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})$$

$$= 2 \sin \frac{k\pi}{n} + (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})$$

$$= 2 \sin \frac{k\pi}{n}$$

$$= 2 \cos \frac{\pi}{n}$$


$$= 2 \cot \frac{\pi}{2n}$$

4

(c) (ii) (continued)

could be simplified in other ways. de- $\left(\cos \frac{2\pi}{2} + i\sin \frac{2\pi}{2}\right)^{k} - 1$ = cos 2 KTT + ism 2 KTT - 1 - $\left(\cos^{2k\pi}-1\right)$ + ism $\frac{2k\pi}{2}$ = $\left(\cos \frac{2k\pi}{n}-1\right)^2 + \left(\sin \frac{2k\pi}{n}\right)^2$ 7 $\frac{\cos^2 2k\pi}{n} - 2\cos^2 k\pi + 1 + 5m^2 2k\pi$ - $\frac{\sin^2 2k\pi}{n} + \frac{\cos^2 2k\pi}{n} + \frac{1}{n} - 2\cos^2 k\pi}{n}$ $+1-2\cos 2kt$ 1 - cos2kTT $-(1-2\sin^2k\pi)$ $4 \sin^2 k \pi$ SINKI 2 -* = 2 sinkt

(c) (ii) (continued)

COMMENT: C)11, about what we are working mink we knowing that coto = coso towards x K-1/=2sin. looking to show that We are KП It is much easier to find 12,2, Man 12,+2, Since /2,2, = /2,//2,

End of solutions